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The integration of segregated brain functional modules is a pre-
requisite for conscious awareness during wakeful rest. Here, we
test the hypothesis that temporal integration, measured as long-
term memory in the history of neural activity, is another important
quality underlying conscious awareness. For this aim, we study the
temporal memory of blood oxygen level-dependent signals across
the human nonrapid eye movement sleep cycle. Results reveal that
this property gradually decreases fromwakefulness to deep nonrapid
eye movement sleep and that such decreases affect areas identified
with default mode and attention networks. Although blood oxygen
level-dependent spontaneous fluctuations exhibit nontrivial spatial
organization, even during deep sleep, they also display a decreased
temporal complexity in specific brain regions. Conversely, this result
suggests that long-range temporal dependence might be an attri-
bute of the spontaneous conscious mentation performed during
wakeful rest.

EEG–functional MRI | resting state | long-range correlations |
multi-modal | consciousness

The human brain displays complex spatiotemporal patterns of
energy-consuming activity, even in the absence of an explicit

task or stimulation (1). Large efforts have been devoted to the
study of spontaneous neural activity encoded in the slow (∼0.1
Hz) fluctuations of the blood oxygen level-dependent (BOLD)
signal, which are measured with functional MRI (fMRI). Non-
trivial spatial organization of functional brain activity in resting
state networks (RSNs) was consistently shown (2–4), comprising
brain regions with high BOLD signal coherence and anatomical
consistency with systems activated during task performance or
stimulation (5).
Remarkably, although human nonrapid eye movement (NREM)

sleep is characterized by impaired awareness and reduced conscious
mentation, organization into RSNs is preserved in light sleep (6)
and to a large extent, deeper sleep stages (7, 8) (SI Appendix,
Fig. S8.1). In particular, the default mode network (DMN; a set
of task-deactivated regions implied with internal conscious cog-
nitive processes) (9, 10) was repeatedly observed during deep
sleep, albeit with reduced frontal connectivity (11, 12). Although
brain modules are preserved, even in the absence of conscious
awareness, their functional integration is greatly impaired (8, 13,
14), which was predicted by an information integration account
of consciousness (15). These results suggest that ongoing con-
scious mentation is not the only origin of RSN activity, whereas
the level of consciousness is reflected in the interaction of
functional networks.
However, brain activity is not completely characterized in the

spatial domain only. fMRI BOLD signals display rich temporal
organization, including scale-free 1/f power spectra and long-range
temporal autocorrelations (16–18), with activity at any given time
being influenced by the previous history of the system up to several
minutes into the past. These landmarks of complex information
processing and rapid adaptability are shared by many systems
found in nature (19, 20). Evidence for such properties is also
manifest in recordings from other modalities, such as EEG/

magnetoencephalography (21, 22) and electrocorticography
(23, 24). Long-range temporal correlations are ubiquitous in be-
havioral data (25–27), with behavioral long-range autocorrelations
related to autocorrelations of underlying brain activity time
courses (28).
The only studies to date addressing temporal properties of the

BOLD signal during sleep have shown increased signal variance
during early stages (29, 30); however, signal variance is, in prin-
ciple, independent of long-range temporal correlation and thus,
may fail to detect changes in temporal complexity. Given that
long-range temporal memory is characteristic of the complex
neural information processing taking place in the human cerebral
cortex—and in particular, the spontaneous conscious mentation
occurring during wakeful rest—we hypothesize that a breakdown
of long-range temporal correlations will occur during the descent
to deep sleep. In the present work, we put this hypothesis to test
by studying, in a group of 63 subjects, changes in the voxelwise
spatial distribution of the Hurst exponent (a measure of long-
range temporal dependence) of fMRI BOLD signals across all
stages of the human NREM sleep cycle, which are paralleled by
decreased conscious awareness (31).

Results
Long-term dependence of BOLD signals was measured with the
Hurst exponent (H), a single numerical quantity indicating the
behavior of the autocorrelation function of a monofractal time
series. [The behavior of a monofractal signal under a change of
scale (SI Appendix, section 1) can be described by a single nu-
merical exponent related to the fractal dimension. This behavior
can be assumed as an adequate first approximation for fMRI
time series (32).] For a stationary signal, 0<H < 1 holds with
three qualitatively different cases: (i) 0:5<H < 1 (the signal
displays long-range positive autocorrelation, with high values
likely followed by high values and low values likely followed by
low values), (ii) 0<H < 0:5 (the signal displays switching be-
tween consecutive time points, with high values likely followed
by low values and vice versa), and (iii) H = 0:5 (the signal has
exponentially decaying autocorrelation, including the possibility
of no temporal correlation). A more detailed introduction to
long-range temporal dependence and self-similarity can be
found in SI Appendix, section 1. Simulating time series with a
stochastic Gaussian process of known long-range temporal
dependence (fractional Gaussian noise) (16), we first showed the
suitability of detrended fluctuation analysis (DFA) (33) as a
method to estimate H for time series of the same length as the
BOLD signals used in our analyses (SI Appendix, Fig. S3.1) and
showed that the estimation accuracy compares favorably with the
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accuracy obtained for longer time series (SI Appendix, Fig.
S3.2). (Because the BOLD signals under study comprise 5 min,
it is important to verify that an accurate H estimate—com-
pared with that estimate obtained from longer BOLD time
series—is obtained.)

H Gradually Decreases from Wakefulness to Deep NREM Sleep. We
estimated H for all gray matter voxels and all stages of NREM
sleep (wakefulness and N1, N2, and N3 sleep, with N1 being the
earliest stage and N3 being the deepest stage). This analysis
revealed a shift to exponentially decaying autocorrelation ðH = 0:5Þ
in the progression from wakefulness to deep sleep. In Fig. 1A,
the H and σ2 probability distributions for all epochs and voxels
are shown as well as the average gray matter H and σ2 values (in
both cases, they are discriminated by sleep stage). The effect of
sleep stage on H was highly significant (F = 21:16, P< 10−9).
Posthoc tests revealed significant differences between both
wakefulness and all other sleep stages (P< 10−3 in all cases).
Significance for the comparison N1 vs. N3 sleep wasP= 0:0014.
Statistical significance was weaker for the difference between N2
and N3 sleep ðP= 0:0259Þ and the difference between N1 and
N2 sleep ðP= 0:116Þ. To compare the observed H values with the
expected scanner-induced noise, we scanned a water phantom in
the bore of the MRI scanner using the same sequence that was
used for the sleep data acquisition. The H probability distri-
bution for the water phantom sharply peaked around H = 0:5,
indicating the lack of long-range temporal autocorrelations.
Fig. 1B shows the averaged anatomical distributions of H and
σ2. H values in the range ≤0:5 are localized in the ventricles,
whereas long-range temporal dependence was characteristic of the
dynamics of cortical and subcortical gray matter.H and σ2 exhibited
a localized decrease and increase, respectively, which is discussed in
the next section.

H During Deep Sleep Decreases in Frontoparietal DMNs and Attention
Networks. We performed a voxelwise comparison of H between
wakefulness and all stages of NREM sleep. In Fig. 2A, we show
the maps of statistical significance for the main effect of sleep
stage for the mean of H together with results of posthoc tests
between wakefulness and N2 and N3 sleep, and we assessed the
directionality and sleep stage specificity of the effect. No voxels
survived multiple comparison correction between wakefulness
and light (N1) sleep. In contrast, a widespread decrease of H was
observed for wakefulness vs. N2 and N3 sleep. Patterns of de-
creased H included parietal and frontal regions associated with
DMNs and attention resting state networks. Additional decrea-
ses were located in the inferior temporal cortex and thalamus
(regions sometimes included in the definition of the DMN) (2).
During N3 sleep, the pattern was more widespread, including
most of the occipital cortex and extending to larger regions in
the parietal and frontal cortices. In SI Appendix, Table S9.1,
information on local statistical significance maxima is presented.
A replication of these results using a method in the time–frequency
domain (wavelet analysis instead of DFA) is shown in SI Appendix,
Fig. S10.1.

Variance During Deep Sleep Increases in Sensory Cortices.We analyzed
differences in signal variance ðσ2Þ, a measure linked to BOLD
amplitude and therefore, spontaneous activation. Statistical sig-
nificance maps of voxelwise comparisons between wakefulness
and all sleep stages are shown in Fig. 2B. The effect of sleep
stage in σ2 was significant in the visual cortex. We found no
difference (with respect to wakefulness) for N1 sleep; however,
N2 sleep was marked by an increase in σ2 that affected all sen-
sory regions (visual, auditory, and somatosensory), and N3 sleep
was characterized by an increase restricted to the visual cortex. In
SI Appendix, Table S9.2, information on local statistical significance
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Fig. 1. BOLD signals gradually shift to short-range tem-
poral correlations in the descent to deep sleep. (A, Left)
Probability distributions for H (all gray matter voxels and
all subjects) for all sleep stages and a water phantom. The
probability distributions for the fluctuation function fit-
ting error (R2) are shown in Inset. (A, Center) Probability
distributions for σ2 by sleep stage (all gray matter voxels
and subjects). (A, Right) Mean H (including phantom data
for comparison) and σ2 by sleep stage. Light blue dashed
lines indicate H= 0:5, the value corresponding to expo-
nentially decaying autocorrelation. (B) Spatial maps of
average H and σ2.
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maxima is provided. Because a straightforward estimation of σ2
can be biased by H (SI Appendix, section 6), we provide a repli-
cation of these results using a method in the time–frequency
domain (wavelet analysis, which robustly estimates σ2), which
can be found in SI Appendix, Fig. S10.2.

Different Spatial Patterns for Variance and H Differences. Visual
inspection of Fig. 2 suggests that spatial patterns associated with
H decrease and spatial patterns associated with σ2 increase are
largely uncorrelated (especially for N2 sleep). In Fig. 3A, such
patterns are rendered together for comparison. In Fig. 3B, the
principle RSNs are shown, which are revealed by independent
component analysis (ICA) from wakefulness data (RSNs obtained
from other sleep stages are shown in SI Appendix, Fig. S8.1),
highlighting the fact that the H decrease is mostly related to task-
negative and attention regions and the σ2 increase is mostly re-
lated to sensory cortices. This observation is quantified in Fig. 3
by computing the overlap (spatial correlation) between the maps
of statistically significant differences and the RSNs identified in
the same data. This analysis confirms that H decreases during
N2 sleep are mostly confined to DMNs and attention networks,
with smaller overlaps with other RSNs (including visual areas).
N3 sleep is characterized by a more widespread H decrease,
including the aforementioned networks and additionally, encom-
passing the visual RSN. However, maps of σ2 increase only overlap
with visual and sensorimotor RSNs during N2 sleep and the visual
RSN during N3 sleep.

H and Variance Covary with Changes in EEG Spectral Content. In-
formation integration theories (15) predict impaired consciousness
in the presence of bistable cortical dynamics (34), which are as-
sociated with the slowing of EEG during deep sleep. This pre-
diction prompted us to analyze the relationship between the
Δ-band (1–4 Hz), H, and σ2. In Fig. 4A, we show the spatial
significance maps for the correlation betweenH and variance with
δ-power (averaged from all channels). H correlates negatively in
frontoparietal regions resembling DMNs and attentional net-
works, whereas BOLD variance shows a positive correlation in
visual areas only. In Fig. 4B, we show scatter plots ofH and σ2 vs. δ
for all wake and sleep epochs included in the study. BOLD signals
used to estimate H and σ2 were extracted from seeds defined in SI
Appendix, Tables S9.1 and S9.2, respectively, and include DMNs
and primary sensory motor regions; in these regions of interest,
δ-power predicts increased H and decreased σ2, respectively.

Discussion
In this work, we show compromised frontoparietal temporal
autocorrelation in deep sleep, a brain state characterized by di-
minished conscious awareness. Our results establish that this
property is gradually diminished from wakefulness to deep sleep.
DMNs and attention networks are affected in the deeper sleep
stages, comprising anatomical patterns markedly different to
those of networks exhibiting increased signal variance.
Ever since the earliest days of scalp EEG, the presence of slow-

and high-amplitude waves has been used as an objective marker of
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Fig. 2. Deep NREM sleep stages are characterized by
specific spatial patterns of decreased H and increased
variance. (A) Main effect of sleep stage on H and
maps of statistically significant differences between
wakefulness and N2 sleep and between wakefulness
and N3 sleep. Results are presented overlaid onto an
anatomical image and rendered on a 3D cortical sur-
face. The blue dotted lines over the 3D rendering
depict the DMN identified with ICA. Modified from
ref. 3. Maps are thresholded at P < 0.05 [family wise
error (FWE) cluster corrected]. (B) Main effect of sleep
stage on σ2 (signal variance) and maps of statistically
significant differences between wakefulness and N2
sleep and between wakefulness and N3 sleep. Results
are presented overlaid onto an anatomical image and
rendered on a 3D cortical surface. The dotted lines
over the 3D rendering depict the visual (light green),
auditory (yellow), and sensory motor RSNs (light blue)
found with ICA. Modified from ref. 3. Maps are
thresholded at P < 0.05 (FWE cluster corrected).
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sleep depth (35). Long-range temporal memory is a landmark of
power fluctuations in faster EEG and magnetoencephalography
frequencies, such as α (8–12 Hz) or β (13–30 Hz) (21); in con-
trast, a decreased H exponent relative to the exponent of
wakefulness is associated with the slow rhythms that herald the
onset of deep sleep (36). Furthermore, sleep stage-dependent
alterations in the 1/f electrocorticography power spectrum have
recently been reported, which are closely linked to the autocorre-
lation regime (24).
Because the temporal resolution of fMRI is superseded by its

high spatial specificity, it is a natural approach to focus on RSNs
when studying how sleep-induced loss of conscious awareness
impacts on resting state BOLD signal fluctuations. Although
specific patterns of large-scale connectivity are characteristic of

different NREM sleep stages (37) (in fact, allowing fMRI-based
sleep staging) (38), ample evidence suggests that canonical RSNs
are grossly preserved during sleep (7, 8) (SI Appendix, Fig. S8.1),
possibly with weakened intranetwork connectivity in the case of
the DMNs (11, 12). However, neural activity giving rise to the
fMRI BOLD signal unfolds in the presence of a rich structural
connectivity, which is known to be reflected in functional con-
nectivity over relatively long temporal scales (39, 40). Therefore,
patterns of anatomical connectivity could induce the homeostatic
maintenance of BOLD coherence into RSN, even in the absence
of complex temporal processing.
Recent work highlights the physiological relevance of long-

range temporal dependence in the fMRI BOLD signal, showing
anatomical specificity in the distribution of H exponents, correla-
tion with brain glucose metabolism, and modulation by task per-
formance (17, 18). Long-range temporal memory in the regional
BOLD signal has been related to spontaneous information pro-
cessing during the wakeful resting state, and activation caused by
cognitive performance results in a loss of this property (17). The
observed breakdown in the autocorrelation of BOLD fMRI during
deep NREM sleep is unlikely related to increased BOLD acti-
vation; on the contrary, evidence exists that transient episodes of
diminished conscious awareness imply deactivation of default mode
areas (41, 42). BOLD variance, an index measuring intensity of
activity fluctuations, is not affected by sleep in the frontoparietal
network related to H changes. Task-induced deactivation also
reduces long-range correlations (17), which could indicate an opti-
mal dynamic range during wakeful rest. Taking this last observation
into account, we speculate that long-range temporal memory is
an essential characteristic of the unrestrained cognition occurring
during the conscious, wakeful resting state, which can be sup-
pressed by either loss of conscious awareness (as in deep NREM
sleep) or focusing in demanding cognitive tasks.
The variance of spontaneous fMRI BOLD signal fluctuations

also shows spatial specificity across the human cerebral cortex
and decreases during activation/deactivation; furthermore, a posi-
tive correlation between variance and H exponent has been shown
for specific brain regions during wakefulness (17, 43). In the
present work, we found patterns of increased BOLD signal
variance during deep NREM sleep that are compatible with
previous results found by other researchers but obtained only for
N1 or early sleep (29, 30). We have also shown that H exponent
and signal variance changes affect different networks during the
deeper sleep stages. A possible source for the observed variance
changes is the polymodal BOLD deactivation (44) induced by
environmental stimuli during sleep (possibly having a role in sleep
protection) (45), which could be repeatedly triggered by scanner
noise or internal stimuli and thus, contribute to an increased signal
variance in the sensory cortices.
In a previous EEG–fMRI study, we linked spontaneous

BOLD fluctuations in the DMN to EEG 17–23 Hz β-activity and
spontaneous BOLD fluctuations in an attentional network to
decreasing 8–12 Hz α-activity (46). The present results are con-
sistent with these findings, given that these fast frequencies dis-
appear along the descent to deep sleep. These frequencies can
also be nested with slowly fluctuating scalp potentials (24, 27). In
particular, a possible neurophysiological substrate for our results
can be found in the slow cortical potential (SCP), a slow ð<4 HzÞ
fluctuation predominantly generated by synaptic activity at apical
dendrites in superficial cortical layers (47). Similar correlation
patterns between the SCP and fMRI BOLD signal have been
reported, which were also maintained in states of greatly diminished
conscious awareness, such as slow wave sleep (48). A functional
role for the SCP in the generation of conscious awareness was
recently suggested (47). We analyzed the H exponent of EEG
amplitude envelopes for different frequency bands and found
differences only in the β2 - (17–23 Hz) and α-bands (8–12 Hz);
there were no changes in the slower-frequency bands (these re-
sults are in SI Appendix, section 16 and Figs. S16.1–S16.3). This
result is consistent with frequency-specific EEG–fMRI correlations
(46). It is likely, however, that even slower frequencies (accessible
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through direct current measurements) have to be examined to
establish changes in SCP autocorrelation during deep sleep.
Long-range temporal correlations and 1/f spectra are generic

features predicted by self-organizing criticality, a theory of col-
lective interactions that naturally accounts for many empirical
observations about brain activity at different scales (20, 49). At
the fMRI level, these features include the presence of long-range
spatial correlations (50), power law-distributed avalanches of ac-
tivity (51), and emergence of correlated structures resembling
RSNs (52). The observedH exponent modulation by sleep prompts
the possibility that self-organizing criticality in the human brain is
not a trivial and unavoidable consequence of physical laws but
rather, contributes to define the dynamical regime of conscious
resting state activity, which can be changed during altered states
of consciousness. A recent study reported changes in the power
law distribution of neural avalanches measured with intracranial
recordings during deep sleep, which is also consistent with this
conjecture (53).
In conclusion, the loss of conscious awareness occurring dur-

ing human NREM sleep is associated with hindered integration
of brain activity not only across space but also in the temporal
domain. The unified perceptual scene that we experience at any

given moment during consciousness is accompanied by a sense of
temporal continuity. Our results suggest that long-term memory
in the history of neural processing of specific brain regions is a
temporal signature of the spontaneous conscious mentation per-
formed during wakeful rest. The extension of our analyses to other
states of impaired consciousness might improve the understanding
of conscious awareness and its relationship with long-range tem-
poral dependence, a topic deserving additional exploration.

Materials and Methods
EEG–fMRI Acquisition and Artifact Correction. EEG through a cap (modified
BrainCapMR; Easycap) was recorded during fMRI acquisition (1,505 volumes
of T2*-weighted echo planar images, repetition time/echo time = 2,080 ms/
30 ms, matrix = 64 × 64, voxel size = 3 × 3 × 2 mm3, distance factor = 50%;
field of view = 192 mm2) at 3 T (Siemens Trio) with an optimized poly-
somnographic setting [chin and tibial electromyography, electrocardiogram,
and electrooculography recorded bipolarly (sampling rate = 5 kHz, low pass
filter = 1 kHz), 30 EEG channels recorded with FCz as the reference (sampling
rate = 5 kHz, low pass filter = 250 Hz, high pass filter = 0.016 Hz), and pulse
oxymetry; respiration recorded through sensors from the Trio (sampling
rate = 50 Hz)] and MR scanner compatible devices (BrainAmp MR+, BrainAmp
ExG; Brain Products). MRI and pulse artifact correction were performed based
on the average artifact subtraction method (54) as implemented in Vision
Analyzer2 (Brain Products) followed by objective (CBC parameters; Vision
Analyzer) ICA-based rejection of residual artifact-laden components after
average artifact subtraction resulting in EEG with a sampling rate of 250 Hz.
Good quality EEG was obtained, which allowed sleep staging by an expert
according to the American Academy of Sleep Medicine (AASM) criteria (55).

Subjects. A total of 63 nonsleep-deprived subjects was scanned in the evening
(starting from ∼8:00 PM) and preliminarily included in the study (written
informed consent; approval by the local ethics committee). Eight subjects had
no epochs of sleep and formed a dataset to test DFA on long (1,500 volumes)
BOLD signals without vigilance switches; 55 subjects reached at least sleep
stage N1. For these subjects, we scanned the hypnograms searching for epochs
of contiguous sleep stages lasting longer than 5 min (150 volumes). Subjects
having only epochs of wakefulness fulfilling this criterion were excluded from
the analyses, leading to a more balanced dataset of 39 subjects; 70 epochs of
wakefulness, 42 epochs of N1 sleep, 47 epochs of N2 sleep, and 38 epochs
of N3 sleep were included in the analyses. The detailed sleep architecture of
each participant can be found in SI Appendix, Table S7.1.

Data Preprocessing. Using Statistical Parametric Mapping 8, Echo Planar Im-
aging (EPI) data were realigned, normalized (Montreal Neurological In-
stitute space), and spatially smoothed (Gaussian kernel, 8 mm3 full width at
half maximum). Cardiac-, respiratory-, and motion-induced noises were
regressed out using the RETROICOR method (56). Short periods (up to 6
volumes) of large (>0.25 mm translational motion with respect to a refer-
ence volume) motion events were eliminated from the analysis using the
information in ref. 57. Data were band pass-filtered in the range of 0.01–
0.10 Hz using a sixth-order Butterworth filter. An ICA was performed on the
dataset comprising all epochs from each sleep stage using MELODIC FSL.
Components reproducing six well-established RSNs (3) were thresholded
at Z = 2.3.

H Exponent Estimation with DFA. DFA (33) quantifies the presence of long-
range temporal dependence in a time series, and it has been developed to
account for possible nonstationarities (local trends) in the data (a general
discussion on long-range temporal dependence is in SI Appendix, section 1).
Given xi , a series of consecutive measurements, the first step is to subtract
the mean and obtain the cumulative sum of the signal:

Xt =
Xt

i=1
ðxi − ÆxæÞ; [1]

where Æ,æ denotes time average. Next, this signal is divided into non-
overlapping time windows of length L, and each is labeled Yk

j , where j in-
dexes measurement number (ranging from 1 to L) and k indexes the time
window (ranging from 1 to the length of Xt divided by L). Then, a linear
function is fitted using least squares in each time window Yk

j , yielding the
slope ðakÞ and intercept ðbkÞ parameters. The signal is detrended by sub-
tracting the best linear fit, and then, the rmsd of this signal (i.e., the fluc-
tuation from the trend) is computed as follows:
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Fig. 4. EEG Δ-power ðPδÞ predicts changes in BOLD fMRI temporal prop-
erties. (A) Statistical significance maps for the correlation between EEG
δ-power (averaged across all channels) and H and BOLD variance. Maps are
thresholded at P < 0.05 (FWE cluster corrected). (B) Scatter plots of H and
BOLD variance vs. δ-power for three regions located in the DMN and three
sensory regions (all selected from SI Appendix, Tables S9.1 and S9.2): right
inferior frontal gyrus and orbital part (ORBinf; 44, 38, −6), right inferior
parietal cortex (IPC; 52, −38, 56), left angular gyrus (ANG; −40, −60, −42), left
calcarine sulcus (Cal; −2, −80, 12), left Heschl’s gyrus (Heschl; −52, −10, 10),
and left paracentral lobule (PCL; −2, −20, 68). Monotonous dependence was
quantified with Spearman rank correlation [ρ; i.e., the linear correlation
between ranked variables, which was in all cases significant ðP < 10−3Þ ]; x, y, z
indicate coordinates in Montreal Neurological Institute space.
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Fk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL

j =1

�
Yk
j − akj−bk

�2
r

: [2]

The Fk values are then averaged across all time windows to yield the
fluctuation function, FðLÞ. For a scale-free or self-affine signal, FðLÞ∝ Lα. In
the case of 0< α< 1, the time series is stationary, and we identify α with H.
We have applied DFA with window sizes of 15, 25, 30, 50, and 75, which
were selected using the procedure described in SI Appendix, section 2. The
procedures followed to assess the goodness of fit are also described in SI
Appendix, section 2.

Statistical Testing. To guarantee statistical independence, H exponent and
variance maps of every subject were averaged across epochs, yielding n = 27

(wakefulness), n = 20 (N1 sleep), n = 24 (N2 sleep), and n = 13 (N3 sleep). The
effect of sleep stage on H and σ2 was assessed using ANOVA tests. To assess
the directionality of the effect, posthoc Student t tests were performed.
Corrections for voxelwise multiple comparisons using random Gaussian
field theory were performed with Statistical Parametric Mapping 8.

ACKNOWLEDGMENTS. We thank Torben E. Lund for providing an MATLAB
implementation of the RETROICOR method; Sandra Anti, Ralf Deichmann,
and Steffen Volz for extensive MRI support; anonymous reviewers for
many helpful comments; and all subjects for their participation. This work
was funded by Bundesministerium für Bildung und Forschung Grant 01 EV
0703 and the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer
Exzellenz (LOEWE) Neuronale Koordination Forschungsschwerpunkt Frank-
furt (NeFF).

1. Raichle ME (2006) Neuroscience. The brain’s dark energy. Science 314(5803):1249–1250.
2. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the

resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci
USA 100(1):253–258.

3. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state
connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci
360(1457):1001–1013.

4. Damoiseaux JS, et al. (2006) Consistent resting-state networks across healthy subjects.
Proc Natl Acad Sci USA 103(37):13848–13853.

5. Smith SM, et al. (2009) Correspondence of the brain’s functional architecture during
activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045.

6. Larson-Prior LJ, et al. (2009) Cortical network functional connectivity in the descent to
sleep. Proc Natl Acad Sci USA 106(11):4489–4494.

7. Boly M, et al. (2008) Intrinsic brain activity in altered states of consciousness: How
conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129.

8. Boly M, et al. (2012) Hierarchical clustering of brain activity during human nonrapid
eye movement sleep. Proc Natl Acad Sci USA 109(15):5856–5861.

9. Raichle ME, et al. (2001) A default mode of brain function. Proc Natl Acad Sci USA
98(2):676–682.

10. Spreng RN, Grady CL (2010) Patterns of brain activity supporting autobiographical
memory, prospection, and theory of mind, and their relationship to the default mode
network. J Cogn Neurosci 22(6):1112–1123.

11. Horovitz SG, et al. (2009) Decoupling of the brain’s default mode network during
deep sleep. Proc Natl Acad Sci USA 106(27):11376–11381.

12. Sämann PG, et al. (2011) Development of the brain’s default mode network from
wakefulness to slow wave sleep. Cereb Cortex 21(9):2082–2093.

13. Spoormaker VI, Gleiser PM, Czisch M (2012) Frontoparietal connectivity and hierar-
chical structure of the brain’s functional network during sleep. Front Neurol 3:80.

14. Tagliazucchi E, et al. (2013) Large-scale brain functional modularity is reflected in slow
electroencephalographic rhythms across the human non-rapid eye movement sleep
cycle. Neuroimage 70:327–339.

15. Tononi G (2008) Consciousness as integrated information: A provisional manifesto.
Biol Bull 215(3):216–242.

16. Maxim V, et al. (2005) Fractional Gaussian noise, functional MRI and Alzheimer’s
disease. Neuroimage 25(1):141–158.

17. He BJ (2011) Scale-free properties of the functional magnetic resonance imaging
signal during rest and task. J Neurosci 31(39):13786–13795.

18. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012) Scale-free and
multifractal time dynamics of fMRI signals during rest and task. Front Physiol 3:186.

19. Bullmore E, et al. (2009) Generic aspects of complexity in brain imaging data and
other biological systems. Neuroimage 47(3):1125–1134.

20. Chialvo DR (2010) Emergent complex neural dynamics. Nature Phys 6:744–750.
21. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal

correlations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377.
22. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans

at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107(42):18179–18184.
23. Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain

surface electric potential. PLoS Comput Biol 5(12):e1000609.
24. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and func-

tional significance of scale-free brain activity. Neuron 66(3):353–369.
25. Gilden DL, Thornton T, Mallon MW (1995) 1/f noise in human cognition. Science

267(5205):1837–1839.
26. Shelhamer M, Joiner WM (2003) Saccades exhibit abrupt transition between

reactive and predictive; predictive saccade sequences have long-term correlations.
J Neurophysiol 90(4):2763–2769.

27. Monto S, Palva S, Voipio J, Palva JM (2008) Very slow EEG fluctuations predict the
dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci
28(33):8268–8272.

28. Palva JM, et al. (2013) Neuronal long-range temporal correlations and avalanche
dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci USA 110(9):
3585–3590.

29. Fukunaga M, et al. (2006) Large-amplitude, spatially correlated fluctuations in BOLD
fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 24(8):
979–992.

30. Horovitz SG, et al. (2008) Low frequency BOLD fluctuations during resting wakeful-
ness and light sleep: A simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682.

31. Laureys S, Tononi G, eds (2011) The Neurology of Consciousness: Cognitive Neuro-
science and Neuropathology (Academic, London).

32. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and mul-
tifractal dynamics of low frequency endogenous brain oscillations in functional MRI.
Hum Brain Mapp 29(7):791–801.

33. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling ex-
ponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):
82–87.

34. Balduzzi D, Tononi G (2008) Integrated information in discrete dynamical systems:
Motivation and theoretical framework. PLoS Comput Biol 4(6):e1000091.

35. Loomis AL, Harvey EN, Hobart G (1935) Further observations on the potential rhythms
of the cerebral cortex during sleep. Science 82(2122):198–200.

36. Acharya U R, Faust O, Kannathal N, Chua T, Laxminarayan S (2005) Non-linear analysis
of EEG signals at various sleep stages. Comput Methods Programs Biomed 80(1):
37–45.

37. Spoormaker VI, Czisch M, Maquet P, Jäncke L (2011) Large-scale functional brain
networks in human non-rapid eye movement sleep: Insights from combined elec-
troencephalographic/functional magnetic resonance imaging studies. Philos Trans A
Math Phys Eng Sci 369(1952):3708–3729.

38. Tagliazucchi E, et al. (2012) Automatic sleep staging using fMRI functional connec-
tivity data. Neuroimage 63(1):63–72.

39. Honey CJ, et al. (2009) Predicting human resting-state functional connectivity from
structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040.

40. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional
connectivity reflects structural connectivity in the default mode network. Cereb
Cortex 19(1):72–78.

41. Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006) Linking generalized
spike-and-wave discharges and resting state brain activity by using EEG/fMRI in
a patient with absence seizures. Epilepsia 47(2):444–448.

42. Gotman J, et al. (2005) Generalized epileptic discharges show thalamocortical acti-
vation and suspension of the default state of the brain. Proc Natl Acad Sci USA
102(42):15236–15240.

43. Fransson P (2006) How default is the default mode of brain function? Further evi-
dence from intrinsic BOLD signal fluctuations. Neuropsychologia 44(14):2836–2845.

44. Czisch M, et al. (2004) Functional MRI during sleep: BOLD signal decreases and their
electrophysiological correlates. Eur J Neurosci 20(2):566–574.

45. Jahnke K, et al. (2012) To wake or not to wake? The two-sided nature of the human
K-complex. Neuroimage 59(2):1631–1638.

46. Laufs H, et al. (2003) Electroencephalographic signatures of attentional and cognitive
default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci
USA 100(19):11053–11058.

47. He BJ, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness.
Trends Cogn Sci 13(7):302–309.

48. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological
correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci
USA 105(41):16039–16044.

49. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of the 1/f
noise. Phys Rev Lett 59(4):381–384.

50. Expert P, et al. (2011) Self-similar correlation function in brain resting-state functional
magnetic resonance imaging. J R Soc Interface 8(57):472–479.

51. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale
brain FMRI dynamics unveiled by a novel point process analysis. Front Physiol 3:15.

52. Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR (2013) Brain organization into
resting state networks emerges at criticality on a model of the human connectome.
Phys Rev Lett 110(17):178101.

53. Priesemann V, Valderrama M, Wibral M, Le Van Quyen M (2013) Neuronal avalanches
differ from wakefulness to deep sleep—evidence from intracranial depth recordings
in humans. PLoS Comput Biol 9(3):e1002985.

54. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in
the MR scanner: The problem of pulse artifact and a method for its subtraction.
Neuroimage 8(3):229–239.

55. AASM (2007) The AASM Manual for the Scoring of Sleep and Associated Events:
Rules, Terminology and Technical Specifications (American Academy of Sleep Medi-
cine, Chicago).

56. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of
physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167.

57. Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007) Modelling large
motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25(6):
894–901.

15424 | www.pnas.org/cgi/doi/10.1073/pnas.1312848110 Tagliazucchi et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312848110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312848110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312848110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1312848110

